
Extending the requirements
models

ICT284 Systems Analysis and Design

Topic 5

We have already covered two primary models of functional

requirements: use cases and domain class models. The next step is

to review these models for consistency and to document parts of

them in more depth, as we begin to move from analysis towards

design. In this topic we cover some additional techniques and

models to extend the analysis models to show further information

about the system. In particular, we focus on fully developed use case

descriptions to document the internal steps within a use case. We’ll

also cover system sequence diagrams (SSDs), state machine

diagrams (SMDs), and the CRUD technique for cross-checking the

domain classes and use cases.

About this topic

1. Explain how information systems are used within organisations to fulfil organisational
needs

2. Describe the phases and activities typically involved in the systems
development life cycle

3. Describe the professional roles, skills and ethical issues involved in systems analysis
and design work

4. Use a variety of techniques for analysing and defining business problems and
opportunities and determining system requirements

5. Model system requirements using UML, including use case diagrams and
descriptions, activity diagrams and domain model class diagrams

6. Explain the activities involved in systems design, including designing the system
environment, application components, user interfaces, database and software

7. Represent early system design using UML, including sequence diagrams,
architectural diagrams and design class diagrams

8. Describe tools and techniques for planning, managing and evaluating systems
development projects

9. Describe the key features of several different systems development methodologies

10.Present systems analysis and design documentation in an appropriate,
consistent and professional manner

Unit learning outcomes addressed in
this topic

After completing this topic you should be able to:

• Explain how additional information about use cases can be
represented in detail

• Create a CRUD table (CRUD matrix) to verify use cases against
the domain model

• Interpret and write fully developed use case descriptions

• Develop activity diagrams to document the flow of activities
within a use case

• Develop system sequence diagrams to model the interaction
between actors and the system

• Develop state machine diagrams to model object behavior

Topic learning outcomes

READING

• Satzinger, Jackson & Burd, Chapter 5

• Satzinger, Jackson & Burd, Chapter 2 p60-62 (activity diagrams)

• Satzinger, Jackson & Burd, Chapter 4 p114-122 (State Machine
Diagrams)

Except where otherwise referenced, all images in these slides are
from those provided with the textbook: Satzinger, J., Jackson, R. and
Burd, S. (2016) Systems Analysis and Design in a Changing World,
7th edition, Course Technology, Cengage Learning: Boston. ISBN-13
9781305117204

Resources for this topic

• CRUD technique for checking model consistency

• Brief use case descriptions

• Fully developed use case descriptions

• Activity diagrams for use cases

• System sequence diagrams (SSD)

• State Machine Diagrams (SMD)

• Summary of requirements models

Topic outline

Introduction

Almost completed analysis
activities …

• We have already covered two primary aspects of
functional requirements: use cases and problem
domain classes

• In this topic we cover some additional
techniques and models to extend these models
to show further information about the system

Slide 8 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Slide 9

Revision
What is this diagram called?

What does it tell us?

Image from Satzinger, J. Jackson, R. & Burd, S. Systems Analysis and Design in a
Changing World, ? edition. Course Technology, Thomson Learning.

Revision
What is the
name of this
diagram?

What does it tell
us?

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Extending and integrating the
requirements models

11

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Overview

• Topics 3 and 4 identified and modeled the two
primary aspects of functional requirements:
use cases and domain classes

• This topic focuses on detailed modelling for use
cases to document the internal steps within a
complex use case

• Fully developed use case descriptions provide
information about each use case, including
actors, stakeholders, preconditions, post
conditions, the flow of activities and exceptions
conditions

12

Overview (continued)

• Activity diagrams can be used to show the flow
of activities for a use case

• System sequence diagrams (SSDs) show the
inputs and outputs for each use case as
messages

• CRUD analysis, which correlates problem domain
classes and use cases, is an effective technique
to double check that all required use cases have
been identified

• The use case modelling can be complemented by
extending the domain modelling by identifying
object behaviour using state machine diagrams

13

Brief use case descriptions

Use case descriptions

• Write a brief description for every use case:

• Complex use cases will also require a fully
developed use case description (discussed later)

15 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

CRUD technique for verifying use
cases

CRUD technique

• CRUD stands for –

Create

Read/Report

Update

Delete

• The CRUD technique provides a way of verifying
that all the required use cases have been
identified

• And that all the domain classes are supported by
the set of defined use cases

• There are two main ways of using the technique
(next slides)

17

CRUD: 1. Verifying use cases

• In this form of CRUD analysis each operation
(C, R, U, D) is checked to verify there is a
relevant use case. Done for each domain class

• This example shows that the identified use cases
are sufficient to maintain Customer data

18

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

CRUD analysis - Steps

1. Identify all domain classes

2. For each class verify that use cases exist to:

• Create a new instance

• Update existing instances

• Read or report on information in the class

• Delete or archive inactive instances

3. Add new use cases as required. Identify
responsible stakeholders/actors

4. If there are different subsystems/applications,
identify which has responsibility for each action:
which to create, which to update, which to use
the data

19

CRUD: 2. Cross-checking use
cases and domain classes

• Cross-match all of the domain classes and use
cases with the operations they perform

• This example shows that the ‘Sale’ class is read
but never updated. ‘Adjustment’ is created but
never used – additional use cases will be required

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• The CRUD technique is a way of ensuring
consistency between the use case modelling and
the domain modelling

• It documents whether there is a use case to
create, read, update and delete each domain
class

• And whether domain classes exist to support the
requirements of each use case

• If any inconsistencies are found, the models can
be questioned and corrected

Summing up…

Fully-developed use case
descriptions

Fully developed use case
descriptions

• Where a use case is more complex, we may
need to write a more detailed fully developed
use case description

• Typically, a template is completed that ensures
all the required information is documented
formally

• … the one used in the textbook is described here

23

Fully developed use case
description

(Larger version on
next slides)

• Use case name

• Scenario (if
needed)

• Triggering event

• Brief description

• Actors

• Related use cases
(<<includes>>)

• Stakeholders

• Preconditions

• Post conditions

• Flow of activities

• Exception
conditions

 24 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Fully developed use case
description Create customer
account (part 1)

25 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Fully developed use case
description Create customer
account (part 2)

26 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Use case description details 1

• Use case name

Verb-noun

• Scenario (only if needed)

A use case can have more than one scenario
• e.g. ‘create customer account’ might have two scenarios,

‘create online’ and ‘create by phone’; or be invoked by
different actors

• Each scenario would have a slightly different flow of
activities

• Triggering event

Based on event decomposition technique

27

Use case description details 2

• Brief description

 Can use the original ‘brief description’ written
when the use case was identified

• Actors

 From the use case diagram

 The person or role that interacts with the
automated part of the system

 - by specifying ‘automated’ it ensures we
can define the user interface dialogs
precisely

28

Use case description details 3

• Related use cases

 If one use case invokes or <<includes>>
another

• Stakeholders

 Anyone with an interest in the use case, other
than the actors involved

29

Fully developed use case
description Create customer
account (part 1)

30 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Use case description details 4

• Preconditions

 What must be true before the use case begins

 - What objects already exist, what information must be
available

• Post conditions

 What must be true when the use case is
completed:

 - What new objects are created or updated

 - how objects are now associated (e.g. an Account is
now associated with a Customer)

• Use for planning test case expected results

• For design stage - which objects will be
involved in collaborating

31

Use case description details 5

• Flow of activities

The activities that go on between actor and the
system

• Use a text description, using numbers to
indicate flow sequence

• or an activity diagram

• Exception conditions

• Alternative conditions or unexpected
conditions (e.g. credit information isn’t valid)

• Link to specific step in the flow of activities
described above

32

Fully developed use case
description Create customer
account (part 2)

33 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Another fully
developed use
case description
example:
Ship Items

34

Go through this one
later at your own
pace to make sure
you fully understand
the technique

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Fully developed use case
description Ship items (part 1)

35 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Fully developed use case
description Ship items (part 2)

36

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• Fully developed use case descriptions provide a
comprehensive description of the context of a use
case and the actions that occur in it

• Typically, a template is completed that ensures all
the required information is documented formally

• The fully developed use case description is a
basis for later documentation (such as system
sequence diagrams and sequence diagrams)

• The preconditions and postconditions included in
the fully developed use case descriptions form a
basis for later software testing

Summing up…

Activity diagrams for use cases

Activity diagrams for use case
descriptions

• We can use the activity diagram notation to
model the flow of activities between the Actor(s)
and the System within a single use case

• The activity diagram may replace the textual
flow of activities, or supplement it

Activity diagram
for use case
Create Customer
Account

shows the flow of
activities between
customer and system
within this use case

40

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Actor System

Activity diagram notation

41

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Activity diagram notation

1. Initial node - solid circle representing the start of the
process.

2. Actions – rounded rectangles representing individual
steps. The sequence of actions make up the total activity
shown by the diagram.

3. Flow - arrows on the diagram indicating the
progression through the actions. Most flows do not
need words to identify them unless coming out of
decisions.

4. Decision - diamond shapes with one flow coming in and
two or more flows going out. The flows coming out are
marked to indicate the conditions.

Slide 42

Create Backorder

Activity diagram notation
(cont’d)

6. Merge - diamond shapes with multiple flows coming in
and one flow going out. This combines flows previously
separated by decisions. Processing continues with any one
flow coming into the merge.

7. Split– a black bar with one flow coming in and two or
more flows going out. Actions on parallel flows beneath
the fork can occur in any order or concurrently.

7. Join – a black bar with two or more flows coming in and
one flow going out, noting the end of concurrent
processing. All actions coming into the join must be
completed before processing continues.

8. Activity final – the solid circle inside the hollow circle
representing the end of the process.

Slide 43

Activity diagram and
equivalent description for

Create Customer Account

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Activity diagram
for use case
Ship Items

Note:

• Synchronization
bars for loop

• Diamond for
decision point

45

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Ship items use
case

46

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• Activity diagrams are a diagrammatic method
for representing activities in a sequence and the
actor responsible for them

• Multiple actors, sequence, decisions, looping and
parallel activities can all be represented

• They are useful for documenting the steps in
complex use cases including the interaction
between actor and system

• Note that activity diagrams are also useful in
requirements gathering for capturing business
workflow processes

Summing up…

Activity
diagram for use
case
Fill shopping
cart

48

This shows the
flow of activities
for Fill Shopping
Cart use case,
plus other use
cases that are
invoked (shown in
shaded ovals)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

System Sequence Diagram (SSD)

System sequence diagram

• System sequence diagrams (SSD) can
supplement use case descriptions and activity
diagrams

• Whereas activity diagrams and descriptions help
the analyst understand the flow of activities,
the SSD describes the associated inputs and
outputs that are passed between the user and
the system

• Shows sequence of interactions as messages
during flow of activities

• System is shown as one object: a “black box”

Slide 50

SSD for Create customer
account use case

51 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

System sequence diagram

• Components: Actor, :System, object lifeline,
messages

• Shows actor and one object, which represents
the complete system

• Shows input and output messaging requirements
for a use case

• Can be used to help develop user interface

• Is a special case of a UML sequence diagram
(later topic) which also shows the internal
classes inside the system

52

System sequence diagram (SSD)
notation

53

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

SSD message notation

Input message:

• Solid line going from Actor to System

• Message name (verb-noun)

• Parameter list - input data (e.g. to identify
particular item needed)

Return:

• Dashed line going from System to Actor

• No message name

• Returned value(s)

SSD for Create customer
account use case

55 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Input message

Return values

SSD message notation cont’d

Loop frame:

• can be used to indicate that a message is sent
repeatedly

Opt frame:

• indicates that a message is optional based on
some condition

Alt frame:

• enables if-then-else logic

SSD alternatives with looping

57

Notice that (a)
and (b) are the
same logic.

The alternative
notation in (b)
shows the
looping, input and
return messages
in a single line

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

SSD examples

• Opt Frame
(optional)

• Alt Frame
(if-else)

58 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Message notation - complete

59

Text from p142 in Satzinger, J. Jackson, R. & Burd, S. (2016) Systems Analysis and Design in a
Changing World, 7th edition. Course Technology, Thomson Learning.

Steps for developing a SSD

1. Identify input messages:

• See use case flow of activities description or activity
diagram

• Wherever an arrow in the activity diagram crosses the
automation boundary there will be a message

2. Describe the message from the external actor to
the system using the message notation

• Name it verb-noun: what the system is asked to do

• Consider input parameters the system will need

• These will likely be attributes from the class diagram

 Slide 60

Steps for developing a SSD

3. Identify any special conditions on input messages

• Iteration/loop frame (or use * on the input message)

• Opt or Alt frame

4. Identify and add output return values:

• On message itself: aValue:= getValue(valueID)

• As explicit return on separate dashed line

5. Check sequence of messages and returns is
shown top-bottom and that nothing internal to the
system object is shown

 Slide 61

Activity diagram and
equivalent description for
Create Customer Account

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

SSD for Create customer
account use case

63 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Ship items use case

64

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

SSD for
Ship items
Use Case

65

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Activity diagram and SSD for Web Order

Slide 66 Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• System Sequence Diagrams (SSD) document the input and
output messaging requirements for a use case

• A SSD can be developed readily from the flow of activities
section in the use case description

• The messages from actor to system show any information
that is passed to the system, and return messages are
passed back from the system

• The system itself is treated as a single object ‘black box’ and
no internal workings are shown

• The SSD is expanded in the system design phase to a
Sequence Diagram that shows the interaction between
objects within the system

Summing up…

State Machine Diagrams –
modelling object behaviour

Object behaviour – states and
transitions

• Some objects (not all) have a life cycle with
state conditions that change and should be
tracked. For example -

• A Student in a unit can be in any of several
possible states: Enrolled, Invalid, Discontinued,
Completed

• The various use cases that involve a Student
object can move it from one state to another,
e.g. ‘Withdraw from unit’ would transition it from
the Enrolled to the Discontinued state

• Here, the particular state for the student is
recorded as a value in attribute ‘Status’

69

Example: SMD for a ‘SaleItem’

• A SaleItem can be in any of four states: open,
on back order, ready to ship, shipped

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

State Machine Diagram (SMD)

• A State Machine Diagram (SMD) is a diagram
that shows the possible behaviour of an object
with states and transitions

• State – a condition during an object’s life when
it satisfies some criterion, performs an action, or
waits for an event

• Transition – the movement of an object from
one state to another

• (SMD is also called a State Transition Diagram)

71

State Machine Diagram components

• Origin state – the original state of an object
before it begins a transition

• Destination state – the state to which an object
moves after completing a transition

• Transition – moves the object from the origin
state to the destination state

• pseudostate – the starting point in a state
machine diagram

72

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

State Machine Diagram for a printer

Syntax of transition statement
transition-name (parameters, …) [guard-condition] / action-expression 73

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

State Machine Diagram components

• Transition name – what causes the transition
to occur

 OnButtonPushed

• guard-condition – a true/false test to see
whether a transition can fire

 SafetyCoverClosed

• action-expression – some activity that must
be completed as part of a transition

 RunSelfTest

Any of these may be empty, although there is
usually a transition name 74

Example: SMD for a ‘SaleItem’

• A SaleItem can be in any of four states: open,
on back order, ready to ship, shipped

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Creating a State Machine Diagram -
steps

1. Review the class diagram and select classes that
might require state machine diagrams

2. For each class, make a list of status conditions
(states) you can identify

3. Begin building diagram fragments by identifying
transitions that cause an object to leave the
identified state

4. Sequence these states in the correct order and
aggregate combinations into larger fragments

5. Review paths and look for independent,
concurrent paths

76

Example: steps in creating a State
Machine Diagram for RMO ‘SaleItem’

1. Choose SaleItem. It has status conditions that
need to be tracked: ready to ship, etc

2. List the states and exit transitions

77

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

3. Build fragments – see figure below

4. Sequence in correct order – see figure below

5. Look for concurrent paths – none

78

Example: steps in creating a State
Machine Diagram for RMO ‘SaleItem’

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Creating a State Machine Diagram –
steps cont’d

6. Look for additional transitions and test both
directions

7. Expand each transition with appropriate
message event, guard condition, and action
expression

8. Review and test the state machine diagram for
the class

• Make sure state are really states for the object in the class

• Follow the life cycle of an object coming into existence and
being deleted

• Be sure the diagram covers all exception condition

• Look again for concurrent paths and composite states

 79

6. Add other required transitions

7. Expand with guard, action-expressions etc.

8. Review and test

Below is the final State Machine Diagram

80

Example: steps in creating a State
Machine Diagram for RMO ‘SaleItem’

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Concurrency in a State Machine
Diagram

• Concurrent states – when an object is in one
or more states at the same time

• e.g. a printer can be both On and Idle

• Path – a sequential set of connected states and
transitions

• Concurrent paths – when multiple paths are
being followed concurrently, i.e. when one or
more states in one path are parallel to states in
another path

81

Example: Printer with
concurrent paths

• Concurrent paths often shown by synchronization bars (similar
to Activity Diagram)

• Multiple exits from a synchronization bar is an “AND” condition
(printer is On and Idle)

• Multiple exits from a state is an “OR” – the object follows only
one of the paths

82

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• Some objects have a life cycle with status
conditions that change and should be tracked

• These status conditions are part of the business
requirements of the system – e.g. an order can
be dispatched, on back order, etc

• State Machine Diagrams (SMD) are used to
document the behaviour of these objects

• SMDs show the states an object can be in, and
the transitions that cause it to move from one
state to another

• SMD thus add further detail to the domain
modelling side of the analysis

Summing up…

Extending and integrating the
requirements models

84

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

After completing this topic you should be able to:

• Explain how additional information about use cases can be
represented in detail

• Create a CRUD table (CRUD matrix) to verify use cases against
the domain model

• Interpret and write fully developed use case descriptions

• Develop activity diagrams to document the flow of activities
within a use case

• Develop system sequence diagrams to model the interaction
between actors and the system

• Develop state machine diagrams to model object behavior

Topic learning outcomes revisited

In the next tutorial, we’ll continue applying various

techniques to extend the requirements models.

The models we’ve discussed in this topic will form a

basis for the design models that we will go on to

create. Before that, though, we’ll give a brief

overview of the systems design phase and the

activities in it.

What’s next?

